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The use of autoregressive spectral densities as exact

models, and as approximating models, [see Akaike (1974, Parzen

(1974), Priestley (1981)] for true spectral densities is often

questioned by sceptical statisticians on the ground that their

use in general is ad hoc and without theoretical justification.

A possible answer to this criticism is provided by entropy

concepts. This paper presents a new proof of the maximum

entropy character of autoregressive spectral densities, first

proved by VanDenBos (1971) following work of Burg (1968).

1. Time series background

The definitions and notation we adopt for the functions

used to describe a zero mean stationary Gaussian discrete

parameter time series Y(t), t=0, +1 .... are as follows.

A "time domain" specification of the probability law of

Y(-) is provided by the covariance function.

R(v) = E[Y(t)Y(t+v)], v=O, +1, +2 ....

or by the variance R(O) and the correlation function

p R) ff Cr
p(v) Corr [Y(t), Y(t+v)J.

To define spectral Crequency) domain specification of

the probability law of Y(-) we first assume summability of R(-)

and p(.). The Fourier transforms of R(v) and p(v) are called

SI.t"



-2-

the power stectrdm S(w) and spectral density function f(w)

respectively, and are defined by

S(w) = e - 2 ivw R(v), O<w<l;

f(w) - i e- 2 riv w p(v)," O<w<l.

A spectral density is called an autoregressive spectral

density when it can be expressed in the form of eq. (3.9) below.

They are used for nonparametric estimation of spectral densities,

and for time series model identification.

Parzen (1982) proposes that it is useful in practice to

distinguish qualitatively between three types of time series:

no memory: white noise,

short memory: stationary and ergodic,

long memory: non-stationary or non-ergodic.

A no-memory or white noise time series is a stationary

Gaussian time series satisfying either of the equivalent

conditions: p(v) - 0 for v>O; f(W) - 1,0<w<l.

A short memory time series is a stationary time series

possessing a summable correlation function p(v) and a spectral

density f(w) which is bounded above and below in the sense that

the dynamic range of f(w)

DR(f) - < i f(w) } ( f()

satisfies l<DR(f)<-. Then f(w) can be shown to be representable

as the limit of a sequence of autoregressive spectral densities

f!W)
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A long memory time series is one which is neither no

memory nor short memory; alternativey, a long memory time series

is one which is non-stationary or non-ergodic. It usually has

components representing cycles or trends.

2. Entropy and exponential models

The notion of entropy in statistics is usually first defined

for a discrete distribution with probability mass function p(x).

The entropy of this distribution, denoted H(p), is defined by

(1) H(p) = - ) p(x) log p(x)

For the distribution of a continuous real valued random variable

X, with probability density function f(x), entropy is defined

(analogously or formally) by

(2) H(f) = -fc f(x) log f(x) dx
-00

A concept closely related to entropy is information

divergence I(f;g) between two probability densities f(x) and

g(x), defined by

(3) I(f;g) - fo{-log f{ }-1f(x) dx

The measure (3) is called by statisticians the Kullback-

Liebler number because it was introduced into statistics in

Kullback and Liebler (1951). It seems that a more correct name

for (3) would be the Kullback number, as the concept of the use

of these numbers in statistical inference, as in Kullback (1959),

is entirely due to Kullback.

I'
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One should note that I(f;g) equals minus the generalized

entropy H(flg) defined by

(4) H(fig) f*{-g~x) log f(x)) g(x) dx

Another fundamental concept is cross-entropy defined by

(5) H(f;g) - f. {-log g(x)} f(x) dx.

Note that H(f) = H(f;f).

Information divergence is expressed in terms of cross-

entropy and entropy by

(6) I(f;g) = H(f;g) - H(f)

Important Information Inequality:

(7) I(f;g) > 0

with equality if and only if f - g; consequently

(8) H(f) < H(f;g)

Some applications of entropy in probability and statistical

modeling are now described.

The method of maximum likelihood parameter estimation can

be described abstractly as follows. One introduces a parametric

family of probability densities fe(x), indexed by a vector

$1,
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parameter 0 = (el,...,Ok. Suppose there is a true parameter

value 6 in the sense that the true probability density

f(x) = f-(x). Then I satisfies

(10) H(f) = H(f;f-) m min H(f;f )

To estimate 6 from data, one forms an estimator H(f;f ) of

H(f;fe) and defines an estimator B of e by

(11) Hkff) mi j(f;f)

The estimator H(f;f ) could be of the form

(12) H(f;fe) = H(f;f 6 )

for a suitable raw estimator f(x) of f(x).

The parametric families of probability densities f,(x)

are often derived axiomatically using a maximum entropy principle.

Natural Exponential models: A parametric family of probability

densities f0 (x) is said to obey a natural exponential model

when it is of the form

k
(13) log f6(x) I jejTj(x) -Y(B 1 ,...,ek)jk)

where

k
(14) v (e 1 , .. k)I log f'dx exp 1 ejTJ(x)

Natural exponential models are maximum entropy probability

densities in the sense of the following theorem [see Guiasu

(1977) and Kagan, Linnik, and Rao (1973), p. 409]. Fix k!'

-- ~~~ ~ , : . -,j

* . 5 . .. ..



functions T (x), J=l,2,...,k, and k real numbers T 1 , 2''...,'Tk

such that there exists probability densities f(x) satisfying

(15) f! Tj(x) f(x) dx - Tj, J=l,....,k.

The density with maximum entropy H(f) among these densities is

of the form (13) where el, ...P k are chosen to satisfy

(16) fo T (x) f (x) dx- , j=,....k.

The aim of this paper is to present a new proof of the

maximum entropy character of autoregressive spectral densities

which is analogous to the simple proof of the maximum entropy

character of exponential models for probability densities.

We recall the latter. Verify that for any f(x) satisfying the

moment constraints (15)

k
(17) H(f;f 0 ) 61(l,...,k) - j 0 jrj H(f0),jml

and therefore

(18) H(f) < H(f;f) H(f 0 ).

Thus the maximum entropy is achieved by fW(x).

i
1,

I ".
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3. Entropy of spectral density functions

To extend entropy concepts to short memory stationary

zero mean Gaussian time series, define the information

divergence for a sample Y(t), t=1,2,...,T as a Tunction of

the true probability density f of the sample, and a model g for

f. We define

(1) I(f;g) lim I
T(co f(f;g)

[lF g(Y(l),...,Y(T)) 1
(2) IT(f;g) - Ef log f(Y(l),...,Y(T))J

It should be noted that we are using the notation f and g

with a variety of meanings. For a Gaussian zero mean stationary

time series, the probability density of the sample is specified

by the spectral densities f(w) of the true distribution

and g(w) of the model. The arguments of the information

divergence I(f;g) indicate spectral densities in the following

discussion. Pinsker (1963) derives the following very important

formula:

!1 fl d w) 1 (

(3) I(f;g) 1 1 g-- - log V 11 dw
0

S' . ..
Ip., .,. ., •



(4 -8-

Since u -log u -i > 0 for all u, I has two of the properties

of a distance: I(f;g) > 0, I(f;f) = 0. However I does not

satisfy the triangle-inequality.

We define the cross-entropy of spectral density functions

f(w) and g (w) by

(4) H(f;g) = ( 1 {log g(w) +
0

The entropy of f is

(5) H(f) H(f;f) = f {log f(w) + 11 d
0

Information divergence can be expressed

(6) I(f;g) = H(f;g) - H(f)

Hence

(7) H(f) < H(f;g)

An approximating autoregressive spectral density of order

m, denoted fm(w), to a spectral density f(w) is defined by

(8) H(f fm) .fmn H(f;fm)

(8)r h m

where the minimization is over'all f3 of the form
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(9fm() 
= a . g

(10) gi(z) 1 + %(l) z+. ..+Ct(m) zm

One may verify that

(11) H(f;f) ~ log aIm + 4 f7 gIeliwt f ()

The coefficients -2 , ((),... m(i) of the minimum cross-
m M

entropy approximating autoregressive spectral density satisfy

(12) - 2 = ij Im(e 2 iw)I2 f(w) dw
m 0

P' g.(e 2yi) f(w) dw
0

min f'jgm (e 2wiw)12 f(w) dw,
gm o

2riw 2 Tik) f(2)dw d

(13) f lj(e )e f(w) dw
0

m-
o1-(mJ) p(j-k) 0, k-l,2,...,m

Further

(14) H(f;!) - + (log. * +1 - H(f=)

The autoregressive spectral density !m(w) cn be derived

axiomatically using a maximum entropy principle.
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Theorem: The spectral density with maximum entropy among

all spectral densities f(w) satisfying the constraints

(15) fI e 2 7riwj f(w) dw = p(j), j=l,2,...,m
0

for m specified correlation coefficients p(l),...,p(m) is

Im( M whose coefficients are determined by (12) and (13).

Proof: It may be verified that Tm(w) satisfies the

constraints(15), and (14) holds for any f(w) satisfying (15).

Since

(16) H(f) < H(f;T m ) = H(fm),
'm m

it follows that fm has maximum entropy among all spectral

densities satisfying the constraints' (15).

A proof of this theorem based on prediction theory (due

to Akaike), is given in Priestley (1981), p. 605. Our proof

has the attraction of emphasizing the parallels between

exponential densities and autoregressive densities.

4. Extension to entropy of density-guantile functions.

Parzen (1979) uses autoregressive densities to model

quantile density functions

q(u) - {F- 1 (u)}' = {f(F-l1)1

The estimators derived may be shown to be maximum entropy

estimators under the constraints imposed. This follows from

ki



the fact that the entropy of a probability density function

f(x) can be expressed

H(f) =I log q(u) du = -log f(F- (u)) du.
0 0

These integrals are defined to be the entropy of the quantile

density function and density-quantile function respectively.

I,

II
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